Кондиционирование Вентиляция Сантехника Отопление
Кондиционирование Вентиляция Сантехника Отопление
СОК СОК
Главное меню
Главная
Новости
СОК онлайн
Рубрики
О журнале
Медиаплан
Реклама
Реклама на сайте
Выставки
Семинары
Контакты
Поиск
Форум
Библиотека
Фотогалерея
Рубрики
Сантехника
Отопление
Кондиционирование
Вентиляция
Энергосбережение
Нормативная База
Объекты
Рекомендуем
Кондиционеры Daikin
Системы воздушного отопления
Кондиционеры, вентиляция, тепловые насосы.
Top100+ :: Teplo.com
c-o-k.ru
Тепловые насосы, Телпый пол и Воздушные фильтры
Aqua-Term 2013

Особенности поиска утечек в подземных трубопроводах тепловых сетей Версия для печати Отправить на e-mail
05.07.2006
Семенюк Д.Н.,
инженер по внедрению
новой техники и технологий,
Служба научно-технических разработок и
диагностики энергоборудования
«Энергоналадка Киевэнерго»

Напрaвление деятельности:
  • определение мест повреждений подземных трубопроводов тепловых сетей, ЦО, ГВС и водоснабжения;
  • определение фактического местоположения и глубины залегания подземных трубопроводов и силовых электрокабелей;
  • определение тепловых потерь магистральных трубопроводов тепловых сетей.

Особенности поиска утечек в подземных трубопроводах тепловых сетей

В различных отраслях промышленности и жилищно-коммунального хозяйства используется огромное количество трубопроводов (тысячи километров), работающих под давлением, доступ к которым затруднен (трубопроводы под слоем грунта, воды и т.д.). Как известно, в процессе эксплуатации трубопровода зарождаются различные дефекты: трещины, утонения стенки и сквозные дефекты (за счет коррозии металла), расклеивания стыковых соединений (в трубопроводах из ПВХ) и др. Проблема выявления таких дефектов постоянно остается актуальной.

В настоящее время для поиска мест утечек жидкости в трубопроводах, работающих под давлением, городского водо и теплоснабжения широко применяются корреляционные и акустические течеискатели.

Сущность методов поиска заключается в том, что вытекание воды через сквозной дефект сопровождается акустическими сигналами, которые можно зафиксировать на самом трубопроводе или над ним.

При поиске акустическими течеискателями шумы протекания воды регистрируются с помощью датчика вибрации на грунте, над трубопроводом последовательно вдоль диагностируемого участка (с шагом 0,25...1,0 м). Координата утечки определяется по максимальному уровню вибросигнала в определенной полосе частот.

Оптимальная полоса частот зависит от типа трубопровода и условий прокладки.

Обычно при работе с корреляционными течеискателями (КТ) два его вибродатчика располагаются на поверхности диагностируемого участка трубопровода, по обе стороны от утечки. Как правило, датчики располагаются в имеющихся, штатных местах доступа к трубопроводу, расстояние между которыми может достигать нескольких сотен метров (рис. 1).
Image
Акустические сигналы регистрируются датчикам и передаются (по кабелям или порадиосвязи) для дальнейшей обработки в блок оператора течеискателя. Результатом поиска утечки с помощью КТ является расстояние Lu от одного из датчиков до утечки, которое в приборе вычисляется по формуле
Image
где L — расстояние между датчиками;
— скорость распространения вибросигналов по трубопроводу;
0 — разность времен прихода вибросигналов от утечки к датчикам, определяется с помощью функции взаимной корреляции.

При работе на трубопроводах учитывается зависимость скорости от диаметра и материала трубы, а также от температуры воды. Вместе с тем, согласно известной формуле [1], полученной Кортвегом, в выражение для скорости распространения волн в жидкости, заполняющей трубу, входит толщина стенки трубы. Толщины стенок отечественных изношенных трубопроводов может отличаться от исходных в несколько раз. Вследствие этого, согласно упомянутым формулам, реальная скорость реал распространения акустических волн вдоль трубопровода может отличаться от задаваемой в приборе скорости приблизительно до 30 %. Для наглядности, на рис. 2. представлена диаграмма отличия реальной скорости распространения волн в жидкости вдоль трубопровода от задаваемой в приборах по поиску утечек с учетом степени износа трубопровода для типовых диаметров, используемых в тепловых сетях: 102 мм, 219 мм, 325 мм, 720 мм, 1020 мм, 1220 мм. Как видно из рис. 2 для больших диаметров (720, 1020 и 1220 мм) отличия реальной скорости от задаваемой одинаковое в процентном соотношении. Несоответствие реальной скорости значения, заложенному в течеискателе приводит к ошибке Lош определения координаты утечки.
Image                                                                                                                                           
где ош = приборная -реальная.

Как видно из рис. 2, величина ошибки определения координаты течи из-за несоответствия реальной скорости значению, заложенному в течеискателе пропорциональна разности времен 0 распространения вибросигналов от утечки к датчикам. Это обстоятельство можно использовать путем выбора такого местоположения вибродатчиков, при котором разность времен распространения вибросигналов является наименьшей. Данному методическому приему способствует следующая особенность тепловых сетей. Трубопроводы обычно проложены в каналах из железобетонных коробов или блоков и покоятся на подвижных и неподвижных опорах. Отсутствие демпфирования трубопроводагрунтом (за исключением мест затопления и заиливания канала) способствует распространению вибросигналов утечки на достаточно большие для практического применения КТ расстояния. Как правило, избыточное давление в трубопроводе составляет не менее 2 атм. Расстояние между местами доступа к трубопроводу обычно не превышает 200 м. Данные особенности теплосетей приводят к тому, что шумы течи, как правило, отчетливо регистрируются вибродатчиками КТ не только в ближайших к повреждению штатных местах доступа к трубам, но и в других местах доступа — теплокамерах, подвалах домов, теплопунктах, бойлерах.
Image
Величина разности времен 0 мала, если утечка расположена близко к середине диагностируемого участка трубопровода. Если утечка расположена далеко от центра ДУ, то указанные особенности ТС часто позволяют искусственно создать условия, при которых величина 0 и соответственно ошибка координаты уменьшатся. Это производится путем перестановки ближнего к утечке вибродатчика в соседнюю теплокамеру в направлении от повреждения. Данный прием можно сочетать с «трехточечным» методом определения координаты утечки, при котором за счет дополнительного измерения при существенно измененном расстоянии между датчиками можно определять координату течи без явного задания скорости распространения акустических волн. Поиск утечек в теплосетях корреляционными течеискателями часто затруднен наличием мощных акустических помех от элеваторов, задвижек, механизмов насосных станций и т.п. Многие помехи сходны по своим характеристикам с шумами утечек. Учитывая многомодовость распространения волн по трубопроводам с канальной прокладкой, акустические помехи нередко приводят к ложным показаниям корреляционных течеискателей. По этому важным этапом поиска утечек в теплосетях является идентификация источника вибросигналов. Для этого в АЭК «Киевэнерго» применяется приборный комплекс К-10.2/А-10. Комплекс разработанный специально для диагностики теплосетей, по заказу АЭК «Киевэнерго», отделом технической диагностики Института проблем моделирования в энергетике при участии Службы научно-технических разработок и диагностики энергооборудования «Энергоналадка Киевэнерго», который состоит из корреляционного К-10.2 и акустического А-10 течеискателей [2]. В настоящее время разработан новый комплекс К-10.3/А-10.

Комплекс предназначен не только для определения местоположения утечки на известном поврежденном участке, но и для оперативного поиска поврежденного участка теплосети. Это важно в случаях, когда явные признаки повреждения отсутствуют. Поиск поврежденного участка ведется с помощью приспособленного для этого акустического течеискателя А-10 и датчика с магнитным держателем (ВДМ) от течеискателя К-10.2 путем проведения измерений уровней вибрации трубопровода в теплокамерах обследуемой ветви теплосетей.

Поиск утечек с помощью приборного комплекса К-10.2/А-10 не ограничивается определением координаты наиболее мощного источника шума на трубопроводе. Такой подход часто приводит к ошибкам, поскольку кроме утечки на трубопроводе имеются другие источники шума — бойлера, элеваторы, насосы, шумы в задвижках и пр. По этому комплекс К-10.2/А-10 приспособлен для работы в условиях нескольких источников шумов и для их идентификации следующим образом:
1) Корреляционный течеискатель К-10.2 имеет специальный режим, в котором оператору в наглядной и удобной форме представляются параметры источников шума: частотный диапазон, мощность, качество, координата.
2) Акустический течеискатель А-10 приспособлен для работы как снаружи, так и внутри теплокамер и имеет необходимые для этого характеристики,такие как: очень малые размеры, крепкий металлический корпус, цифровая многоразрядная индикация уровня сигнала с подсветкой и возможность подключения датчиков с магнитным держателем для крепления на трубопроводе и точного измерения уровней вибрации на трубах в теплокамерах в различных точках. В большинстве случаев это дает возможность определить направление прихода вибросигналов и выяснить их источник.

С помощью течеискателя А-10 проводят измерение уровней вибросигналов как на поверхности грунта, так и на поверхности трубопровода. В этих условиях, учитывая отсутствие демпфирования трубопроводов грунтом, динамический диапазон регистрируемых вибросигналов и соответственно измеряемых уровней вибрации достигает 100 дБ. Особенно важно это учитывать при поиске поврежденного участка теплотрассы на разветвленной системе теплосети путем сравнения уровней вибрации труб в разных местах доступа. По этому течеискатель А-10 имеет простую в применении, многоразрядную цифровую индикацию уровней вибрации, позволяющую быстро составить карту уровней шумов и по ней выявить поврежденный участок. Прибор А-10 хорошо себя зарекомендовал при поиске утечек во внутридомовых системах отопления и водоснабжения на ПВХ трубопроводах.

Распространение вибросигналов по трубопроводу происходит в виде нескольких волн с различными скоростями, из-за чего корреляционная функция часто размывается и ее интерпретация становится неоднозначной. В таких случаях важно не ошибиться в выборе диапазона частот с достоверными показаниями координаты источника шума. Для выбора частотного диапазона корреляционной функции с достоверными показаниями в течеискателе К-10.2 реализован режим частотного анализа корреляционных функций. Этот же режим применяется в случаях нечетких показаний корреляционной функции, вызванных сильным затуханием вибросигналов утечек, а также при наличии более одной течи.

Как видно из формулы (1), в неё входит параметр — расстояние между датчиками, которое часто определяют по чертежам и схемам прокладки инженерных сетей. Из личного опыта известно, что в 50 % случаев схемыне соответствуют действительности или отсутствуют. Часто, особенно на малых диаметрах, не указываются температурные компенсаторы, повороты, точное направление трубопровода и т.п. Чтобы избежать ошибки при задавании расстояния между датчиками, т.е. длины трубопровода включая все повороты, температурные компенсаторы, спуски и подъёмы, нужно определить фактическое местоположения трубопровода. Для этой цели используют трассопоисковый комплект приборов, который предназначен для бесконтактного определения фактического местоположения и глубины залегания подземных металлических трубопроводов, действующих силовых и связных кабелей, а также других металлических протяжённых подземных коммуникаций.

В заключение следует сказать, что упомянутые методические и приборные средства позволили на трубопроводах теплосетей АК «Киевэнерго» обеспечить определение мест утечек с вероятностью не менее 0,9 с погрешностью до 1 метра.

Литература
1. Бергман Л. Ультразвук. — М.: ИИЛ, 1957. — 726 с. — С. 393.
2. Безпрозванный А.А., Владимирский А.А., Владимирский И.А., Ненюк А.Т. Повышение достоверности поиска утечек трубопроводов тепловых сетей // Энергетика и электрификация. — 2000. — N 2. — C. 29-32.

Последнее обновление ( 21.09.2006 )
 
< Пред.   След. >

Будем благодарны, если воспользуетесь одной из этих кнопок: