Кондиционирование Вентиляция Сантехника Отопление
Кондиционирование Вентиляция Сантехника Отопление
СОК СОК
Главное меню
Главная
Новости
СОК онлайн
Рубрики
О журнале
Медиаплан
Реклама
Реклама на сайте
Выставки
Семинары
Контакты
Поиск
Форум
Библиотека
Фотогалерея
Рубрики
Сантехника
Отопление
Кондиционирование
Вентиляция
Энергосбережение
Нормативная База
Объекты
Рекомендуем
Системы воздушного отопления
Кондиционеры, вентиляция, тепловые насосы.
Кондиционеры Daikin
Top100+ :: Teplo.com
c-o-k.ru
Aqua-Term 2013
Тепловые насосы, Телпый пол и Воздушные фильтры

Пример гидравлического расчёта вертикальной двухтрубной системы отопления с нижней разводкой Версия для печати Отправить на e-mail
22.08.2007

Автор В.В. Покотилов, к.т.н., доцент кафедры Теплоснабжения и вентиляции Белорусского технического университета

На участке № 2 потеря давления в термостатическом клапане ГЕРЦ-TS-90 определяется с помощью его номограммы по зависимости 2 К, показанной на рис. 6.9 . При G уч = 52 кг/ч потеря давления:

Ä P кл.1 = 780 Па.

Image

Потерей давления балансового радиаторного вентиля ГЕРЦ-RL-5 для основного расчётного кольца задаемся, исходя из следующих соображений (см. раздел 4.3 [1]).

Для основного расчётного кольца следует задаться максимально возможным открытием в диапазоне гидравлических настроек n , но при этом иметь потерю давления не менее 4…5 кПа. Задаемся гидравлической настройкой n = 1,0 оборота и соответствующей ей потерей давления:

Ä P кл.2 = 5400 Па

( рис. 6.10 ).

Image

Суммарные потери давления составляют:

Ä P уч.ст = Ä P уч.1, 2, 2* * = 7453 Па (7,5 кПа).

Далее следует рассчитать циркуляционное кольцо через прибор 2-го этажа Ст. 13. Необходимо определить потери и гидравлические характеристики цепи из участков № 3, № 4 и № 3*, для которых располагаемое давление будет равно потерям в параллельном участке № 2 с учётом дополнительного

влияния Р е . Тогда, с учётом формулы (4.5) [1], располагаемое циркуляционное давление для цепи из участков № 3, № 4 и № 3* равно:

P расп. уч. 3, 4, 3* = Ä P уч2 + 0,4 . Р е ,

где

Р е = g . Ä h . Äñ . ( t г - t о ) = 9,81 . 3,0 . 0,60 . (80 - 60) = 353 Па.

Сумма коэффициентов местных сопротивлений

Óæ :

❚ участок № 3 (а также № 5, 7, 9, 11, 13, 15, 17, 19, 21):

тройник проходной, Óæ = 1,0;

❚ участок № 4 (а также № 6, 8, 10, 12, 14, 16, 18, 20, 22)

(без учета термостатического клапана ГЕРЦ-TS-90 и балансового радиаторного вентиля ГЕРЦ-RL-5):

тройник на ответвление, радиатор секционный, тройник на противотоке,

Óæ = 1,5 + 2,0 + 3,0 = 6,5;

❚ участок № 3* (а также № 5*, 7*, 9*, 11*, 13*, 15*, 17*, 19*, 21*): тройник проходной, Óæ = 1,0;

❚ участок № 23 (без учета термостатического клапана ГЕРЦ-TS-90 и балансового радиаторного вентиля ГЕРЦ-RL-5): 2 тройника, проход, радиатор секционный, 2 отвода, Óæ = 2 . 1,0 + 2,0 + 2 . 1,5 =7,0.

Выполним подбор клапанов (ГЕРЦ-TS-90) и (ГЕРЦ- RL-5) на «регулируемых участках» № 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 23.

Сопротивление Ä P кл1 клапана ГЕРЦ-TS-90 определяем по номограмме рис. 6.9 . Требуемое сопротивление Ä P кл2 балансового вентиля ГЕРЦ-RL-5 определяем по выражению:

Ä P кл2 = ( ÓÄ P кл ) рег.уч - Ä P кл1 .

Требуемое значение пропускной способности k v балансового вентиля ГЕРЦ-RL-5 определяем по вышеприведенной формуле или по номограмме, показанной на рис. 6.10 , с помощью которой также определяем значения n гидравлической настройки вентиля ГЕРЦ-RL-5.

Расчёт гидравлических параметров и его результаты выполняем в ведомости в виде табл. 6.4.

Image

Значения для уч. № 2 занесены в табл. 6.4 на основании вышеприведенных результатов расчёта, в т.ч. из табл. 6.3 (см. «С.О.К.» № 7, 2007).

Значение k v балансового вентиля ГЕРЦ-RL-5 определяем по формуле (4.10) [1]:

k v = G / (10 . P кл ) . 0,5 = 52 / (10 . 5400) . 0,5 = 0,22 м 3 /ч.

Например, для уч. № 20 величина Ä P кл1 = 350 Па определяется по номограмме рис. 6.9 .

Значение Ä P кл2 определяем по выражению:

Ä P кл2 = 2488 - 350 = 2138 Па.

Значение k v балансового вентиля ГЕРЦ-RL-5 определяем по формуле (4.10) [1]:

k v = G / (10 . P кл ) . 0,5 = 35 / (10 . 2138) . 0,5 = 0,24 м 3 /ч,

а значения n гидравлической настройки определяем по номограмме рис. 6.10 :

n = 1,1.

Задаемся параметрами n , Ä P кл2 , k v балансового вентиля ГЕРЦ-RL-5 только для регулируемого участка № 2. Для всех остальных регулируемых участков и установленных на них балансовых вентилей указанные параметры вычисляются таким же образом, как это выше показано на примере участка №20.

Потери давления Ä P рег в регуляторе ГЕРЦ 4007 зависят от комплекса гидравлических параметров системы отопления:

  • от напора, создаваемого насосом Р н ;
  • от заданного регулируемого перепада давления: Ä P ЗАД = ÓÄ P уч.ст ;
  • от динамики работы термостатических клапанов на отопительных приборах стояка.

Гидравлические расчёты при проектировании выполняются на так называемые «расчётные условия», получая в результате «расчётные параметры».

«Расчётные условия» предполагают также, что вся запорная открыта полностью, балансовая арматура находится в положении проектных уставок, а регулирующая арматура находится в положении максимального «регулируемого» расхода теплоносителя.

Таким образом, при всех других условиях, отличных от «расчётных», расходы теплоносителя на регулируемых участках и в системе отопления будут меньше «расчётных».

Из гидродинамики дроссельно-регулирующей арматуры известно, что для обеспечения качественного регулирования во всем диапазоне рабочего хода штока регулятора необходимо, чтобы при степени открытия клапана 90% его гидравлическое сопротивление Ä P рег должно составлять не менее 60…100% сопротивления регулируемого участка сети.

Тогда для рассматриваемого примера расчёта можно записать:

Ä P рег > (0,6…1,0) . Ä P уч.ст = (0,6…1,0) . 7453 Па.

Принимаем:

Ä P рег .= 8000 Па.

Динамический узел регулирования и рассчитанные сопротивления системы отопления показаны на рис. 6.11 .

Image

Из приведенного графика видно, что при уменьшении расхода через регулятор менее расчётного значения 473 кг/ч перепад давления на стояке Ä P уч.ст остается постоянным и равным: Ä P уч.ст = Ä P ЗАД = 7,5 кПа.

При этом перепад давления на регуляторе Ä P рег увеличивается, а потери давления в трубопроводах уменьшаются.

Пусковая наладка регулятора ГЕРЦ 4007 заключается в установке на регуляторе проектного значения n гидравлической настройки.

Определяем значение n гидравлической настройки регулятора ГЕРЦ 4007 с помощью номограммы, представленной на рис. 6.12 .

Image

Ключ пользования номограммой показан стрелками. При задаваемом регулируемом перепаде давления на стояке Ä P ЗАД = 7,5 кПа и расчётном расходе G = 473 кг/ч необходимо установить маховичок регулятора на величину гидравлической настройки n = 80.

Для подбора циркуляционного насоса определим требуемый напор насоса:

Р н = Ä P со = Ä P ТП + ÓÄ P уч.с.т + ÓÄ P уч.ст + Ä P рег = 23,1 + 5,2 + 7,5 + 8,0 = 43,8 кПа (≈ 4,5 м.вод.ст.).

Подберем циркуляционный насос с электронным управлением скорости вращения, удовлетворяющий следующим исходным данным:

❚ подача

V н = V со = 10 м 3 /ч,

❚ напор

Р н = 4,5 м.в.ст.

Таким условиям соответствует насос фирмы Grundfos марки MAGNA UPE 40-120 F . ■

Литература

1. В.В. Покотилов . Пособие по расчёту систем отопления. «HERZ Аrmaturen G.m.b.H.». — Вена, 2006.

 
< Пред.   След. >

Будем благодарны, если воспользуетесь одной из этих кнопок: