Кондиционирование Вентиляция Сантехника Отопление
Кондиционирование Вентиляция Сантехника Отопление
СОК СОК
Главное меню
Главная
Новости
СОК онлайн
Рубрики
О журнале
Медиаплан
Реклама
Реклама на сайте
Выставки
Семинары
Контакты
Поиск
Форум
Библиотека
Фотогалерея
Рубрики
Сантехника
Отопление
Кондиционирование
Вентиляция
Энергосбережение
Нормативная База
Объекты
Рекомендуем
Кондиционеры, вентиляция, тепловые насосы.
Системы воздушного отопления
Тепловые насосы, Телпый пол и Воздушные фильтры
Кондиционеры Daikin
c-o-k.ru
Top100+ :: Teplo.com
Aqua-Term 2013

О перспективах использования дифосфатов для очистки промышленных сточных вод Версия для печати Отправить на e-mail
27.11.2006

Авторы Антрапцева Н.М., Пономарева И.Г., Ткачева Н.В., Национальный аграрный университет, Киев

В настоящее время, когда развитие промышленности, транспорта, коммунального хозяйства привело к широкомасштабному загрязнению поверхностных вод неочищенными стоками, очистка воды стала одним из самых востребованных технологических процессов, а вопросы ее усовершенствования приобрели особую актуальность.

Значительную массу загрязняющих веществ в окружающую среду в виде токсичных ионов тяжелых металлов вносит металлообрабатывающая промышленность и гальваническое производство [4]. Оно относится к наиболее экологически небезопасным производствам и поэтому требует постоянного усовершенствования существующих и разработки новых эффективных и более экономичных методов очистки сточных вод от ионов тяжелых металлов.

Наиболее распространенным методом очистки отработанных кислых растворов гальванических ванн является осаждение ионов тяжелых металлов в виде гидроксидов, а воды от промывки деталей после нанесения покрытия — нейтрализацией щелочными реагентами [2]. После такой очистки в воде остается в растворенном состоянии от 5 до 100 мг/дм3 ионов тяжелых металлов.

По мнению авторов работы [2], осаждением с помощью растворимых фосфатов можно достичь большей степени очистки, чем щелочными реагентами. Недостатком такой технологии является сложность отделения очищаемой воды от осадков фосфатов и гидроксидов тяжелых металлов, поскольку они осаждаются в виде тонкодисперсной взвеси с размерами частиц менее 100 мкм.

Выбор оптимального, экологически безопасного технологического процесса очистки промышленных сточных вод — достаточно сложная задача. Перспективным в этом плане может явиться осаждение ионов тяжелых металлов в виде нерастворимых дифосфатов, которые, согласно нашим исследованиям [6], обладают сорбирующим эффектом. Этот факт был установлен экспериментально при изучении сорбционных характеристик индивидуального дифосфата марганца и твердого раствора на его основе состава:

Image

Исследования проводили в термостатированной адсорбционно-вакуумной установке с кварцевыми пружинными весами Мак-Бена при температуре 20 °С. Константы кварцевых спиралей находились в пределах 1,94– 2,9 мг/мм. Величину изменения спиралей-пружин измеряли катетометром КМ-8. Для удаления газов и паров, адсорбированных на поверхности адсорбентов, образцы предварительно откачивали при температуре 150 °С на протяжении 5 часов под вакуумом не ниже 10-3 мм рт.ст. Равновесное давление пара в адсорбционной установке определяли с помощью U-образного манометра с точностью 0,5 мм.

Определение удельной поверхности по методу БЭТ включало такие стадии: оценку емкости монослоя (am) по изотерме адсорбции и расчет величины удельной поверхности по значению am с использованием молекулярной площади nm (молекулярную площадь поверхности сорбентов, занятую одной молекулой н- ексана, принимали равной 5Е [7]).

Для расчета величины удельной поверхности дифосфатов использовали уравнение БЭТ [3]:
Image
где а — величина адсорбции пара при данном относительном давлении, ммоль/г;
am — величина адсорбции пара адсорбата при мономолекулярном покрытии поверхности (емкость монослоя);
с — константа, зависящая от энергии взаимодействия адсорбат-адсорбент;
р — равновесное давление пара, мм рт. ст.;
рs — давление насыщенного пара, мм рт. ст.

Эффективный радиус пор рассчитывали по формуле Кельвина [3], используя десорбционную кривую изотермы:
Image
где — поверхностное натяжение, дин/см2;
V0 — молярный объем, см3/г;
R — универсальная газовая постоянная, (дин . см)/(град .моль);
Т — температура, К;
Рs — давление насыщенного пара, мм рт. ст.,
Р — равновесное давление, мм рт. ст.

Для характеристики пористой структуры и адсорбционных свойств дифосфатов использовали изотермы сорбции паров метанола и н-гексана. На рис. 1 представлена изотерма адсорбции и десорбции метанола на дифосфате состава:
Image

Image

Как показали результаты исследований, метанол остается на поверхности адсорбента даже после длительного обезгаживания при низких давлениях (в пределах 1,33 . 10-2 Па). Такое его поведение, объясняется, скорее всего, образованием водородных связей между ОН-группами молекул спирта и атомами Н молекул воды дифосфата, что делает невозможным использование его для дальнейших исследований.

Выбор в качестве адсорбата н-гексана вполне закономерен, поскольку его молекула не имеет дипольного момента или функциональной группы и, как следствие, не образует с поверхностью дифосфатов водородных связей или диполь-дипольного взаимодействия. Взаимодействие их за счет сил Ван-дер-Ваальса отвечает условиям применения уравнений БЭТ и Кельвина и позволяет использовать их для расчета структурно-сорбционных характеристик исследуемых дифосфатов на основе полученных изотерм адсорбции.

На рис. 2 представлены изотермы адсорбции и десорбции паров н-гексана на дифосфатах общей формулы Мn2- хСохP2O7 . 5H2O с различным содержанием марганца и кобальта. Определенные на основе экспериментальных данных сорбционные характеристики дифосфатов обобщены в таблице.
Image
Image
Согласно экспериментальным данным (рис. 2), изотермы имеют лэнгмюровскую форму, указывая на наличие в структуре дифосфатов переходных пор. Адсорбция паров н-гексана для дифосфатов разного состава описывается изотермами, для которых фиксируются две петли гистерезиса. Первая из них, в области низких относительных давлений P/Ps = 0,0–0,77, обусловлена капиллярной конденсацией н-гексана именно в переходных порах. Характерной для изотерм является необратимая адсорбция в области невысоких относительных давлений вплоть до P/Ps = 0. Это, скорее всего, свидетельствует о наличии микропор, которые создают пространственные сложности для десорбции н-гексана при нормальных условиях.

Анализ изотерм дифосфатов разного состава показал, что десорбционная кривая изотермы на образце Мn2P2O7 . 5H2O имеет четкую волнообразную форму, свидетельствуя о полислойной адсорбции молекул н-гексана на поверхности дифосфата (рис. 2, кривая 1). По мере замещения марганца на кобальт в структуре дифосфата Мn2P2O7 форма изотерм несколько изменяется, они становятся более пологими (рис. 2, кривые 2-4). Такие изменения обусловлены тем, что появление кобальта в структуре индивидуального дифосфата Мn2P2O7 . 5H2O приводит к довольно резкому уменьшению удельной поверхности дифосфатов (см. табл.). В области составов дифосфатов Мn2-хСохP2O7 . 5H2O (0,42 < х < 0,83) удельная поверхность постепенно увеличивается. Аналогично изменяются и значения граничной адсорбции и емкости монослоя (см. таблицу).

Как показали результаты расчета эффективных радиусов пор (см. табл.), дифосфаты характеризуются мезопористой структурой. Они имеют широкий набор пор с эффективными радиусами от 15 до 160 Е. Наряду с микропорами (незакрытый гистерезис) присутствуют мезопоры (15, 17 Е) и крупные поры — переходные — на грани мезопор (160 Е).

Именно поры с радиусом 160 Е обеспечивают подъем адсорбционных кривых в области больших относительных давлений и появление второй петли гистерезиса в области P/Ps 0,82–1,0. Обращает на себя внимание тот факт, что с увеличением содержания кобальта в составе дифосфатов эффективный радиус пор увеличивается.

На рис. 3 представлена зависимость емкости монослоя, величины граничной адсорбции и удельной поверхности от состава дифосфатов общей формулы Мn2-хСохP2O7 . 5H2O.
Image

Сравнительный анализ сорбционных характеристик исследованных дифосфатов и таких известных сорбентов как гидроксилапатит [2,5] и фосфаты на основе титана [1] показал, что их сорбционные свойства сопоставимы.

Таким образом, полученные экспериментальные данные подтверждают возможность использования дифосфатов в качестве сорбентов для очистки промышленных сточных вод. ■

Литература
1. Будовицкая Т.А. Синтез и исследование сорбционных свойств смешанных фосфатов титана, циркония и олова: Автореф. дис. канд. хим. наук. — Киев, 1992. — C. 16.
2. Высоцкая Е.В., Тарасевич Ю.И., Климова Г.М., Кузьменко Н.Л. Синтез гидроксилапатитов и применение полученных материалов для извлечения ионов тяжелых металлов из водных растворов // Химия и технология, 2002.— Т. 24, № 6. — 535-546 c.
3. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. — М.: Мир,1984. — C. 306.
4. Запольский А.К. Образцов В.В. Комплексная переработка сточных вод гальванических производств.— К.:Техника, 1989. — C. 188.
5. Каназава Т. Неорганические фосфатные материалы. — К.: Наук.Думка, 1998. — C. 297.
6. Ткачова Н.В., Клюгвант А.А. Сорбційні характеристики твердих розчинів гідратованих дифосфатів мангану-кобальту (магнію) // В сб. тезисов докладов ІІІ Всеукр. конф. молодих вчених та студентів з актуальних питань хімії. — Харків. 17-20 травня 2005. — С.139.
7. McCieitan A.L., Harnsberger H.F. // J. of Colloid and interface Sci. — 1967.— V.23, № 4. — 577-599 p.

Последнее обновление ( 20.02.2007 )
 
< Пред.   След. >

Будем благодарны, если воспользуетесь одной из этих кнопок: