Кондиционирование Вентиляция Сантехника Отопление
Кондиционирование Вентиляция Сантехника Отопление
СОК СОК
Главное меню
Главная
Новости
СОК онлайн
Рубрики
О журнале
Медиаплан
Реклама
Реклама на сайте
Выставки
Семинары
Контакты
Поиск
Форум
Библиотека
Фотогалерея
Рубрики
Сантехника
Отопление
Кондиционирование
Вентиляция
Энергосбережение
Нормативная База
Объекты
Рекомендуем
Системы воздушного отопления
Кондиционеры, вентиляция, тепловые насосы.
Тепловые насосы, Телпый пол и Воздушные фильтры
Top100+ :: Teplo.com
c-o-k.ru
Кондиционеры Daikin
Aqua-Term 2013

Энергосберегающие системы в больницах Версия для печати Отправить на e-mail
25.11.2011

В настоящее время во многих больницах в нашей стране можно наблюдать, что построенные по проекту системы приточной вентиляции не используются службой эксплуатации из желания экономить тепло на нагрев приточного воздуха. Поэтому больные открывают фрамуги, и в палату поступает холодный наружный воздух.

По нормам [1] в помещения больничных палат круглый год должна поступать санитарная норма приточного наружного воздуха в удельном количестве 80 м3/(ч⋅чел) при удельной норме заполнения больничной палаты 5 м2/чел. Примем, что больничная палата имеет размеры 5 м по ширине и 6 м по глубине. Площадь пола палаты Fпол = 5 × 6 = 30 м2. В палате установлены койки для размещения больных в количестве Л = 30/5 = 6 человек. В палату должен быть обеспечен приток наружного воздуха в количестве lпн = 6 × 80 = 480 м3/ч. Больница располагается в Москве, расчетная температура наружного воздуха в холодный период года равна tнх = –28 °C при продолжительности отопительного периода 214 суток, средняя температура наружного воздуха за отопительный период tн.ср.от = –3,1 °C [2].

В помещении больничной палаты круглый год необходимо поддерживать параметры воздуха на уровне теплового комфорта для человека, которые нормируются по температуре и влажности воздуха в зоне обитания людей tв [°C], температура воздуха в холодный период года должна быть tвх = 20–22 °C, а летом tв = 23–25 °C. Относительная влажность воздуха в зоне обитания людей может колебаться от jвх = 30 % зимой и до jвх = 60 % летом [3].

По газовым загрязнениям определяющим фактором влияния на здоровье человека является содержание углекислого газа в воздухе в зоне обитания людей, которое должно превышать концентрацию углекислого газа в наружном воздухе не более:
Св.газ = Сн.газ + 1250 мг/м3.

В наружном воздухе крупных городов Сн.газ = 1000 мг/м2 [1].

Для поддержания в обитаемой зоне больничных палат требуемых нормируемых параметров воздуха в зоне нахождения людей по температуре, относительной влажности, чистоте и загазованности необходимо применять механическую приточно-вытяжную вентиляцию [3].

В состоянии покоя от одного взрослого мужчины при tвх = 20 °C выделяется: явного тепла 90 Вт/(ч⋅чел); водяных паров 40 г/(ч⋅чел). Для рассматриваемой палаты площадью 30 м2 количество выделений от больных составит:
qтл.выд = 6 × 90 = 540 Вт/ч;
wв.пар = 6 × 40 = 240 г/ч.
Выделяющееся от людей явное тепло поступает в помещение при температуре тела человека, которая при нормальном тепловом комфорте равна tчел = 36,6 °C. Эта температура выше температуры окружающего человека воздуха, и поэтому явное тепло конвективным потоком поднимается под потолок палаты. Аналогично, выделяющиеся от человека водяные пары имеют температуру не ниже 36,6 °C, и они легче водяных паров, которые содержатся в окружающем человека воздухе, и поэтому поднимаются под потолок. При выдыхании от человека в окружающий воздух поступает углекислый газ, который также поднимается конвективными потоками под потолок палаты.

К сожалению, в большинстве проектов систем вентиляции больничных палат приточный воздух от центральных приточных агрегатов подается в верхнюю зону помещения. Это приводит к тому, что, опускаясь в зону обитания, приточный воздух смешивается с конвективными потоками вредностей и возвращает часть этих вредностей в зону обитания людей. Такая схема организации воздухообмена получила название «смесительной вентиляции» [1].

Значительно более качественные и комфортные условия по воздушному микроклимату в зоне обитания людей в помещении обеспечиваются при применении схемы т.н. «вытесняющей вентиляции» [1].

Приготовленный в центральном приточном агрегате воздух подается через специальные напольные воздухораспределители непосредственно в зону обитания людей в помещении.

По условиям теплового комфорта температура приточного наружного воздуха tпн должна быть не ниже следующих величин: зимой при tвх = 20 °C приток tпнх = 20 – 3 = 17 °C; летом при tв = 25 °C приток tв = 25 – 5 = 20 °C. Скорость поступления приточного воздуха в помещение от напольных воздухораспределителей должна быть не выше vпн = 0,3 м/с.

Для рассматриваемой палаты напольные приточные воздухораспределители должны иметь площадь приточного сечения следующей величины: Наружная стена имеет площадь 5 × 3 = 15 м2. В ней расположено окно площадью 2,5 × 2 = 5 м2. По современным нормам теплозащиты зданий [4] стены в климате Москвы должны иметь термическое сопротивление Rст = 3,5 м2⋅с/Вт, окна — Rок = 0,6 м2⋅с/Вт.
Вычислим расчетные трансмиссионные теплопотери. Потери через стену: потери через окно: Общие теплопотери Σqт.пот = 137 + 400 = 537 кВт⋅ч.

При явных теплопритоках от шести человек больных в рассматриваемом помещении в 540 Вт⋅ч расчетные трансмиссионные теплопотери в 537 Вт⋅ч полностью компенсируются. На систему отопления остается компенсация тепла на догрев приточного наружного воздуха с tпнх = 17 °C до tвх = 20 °C: В настоящее время во многих больницах в нашей стране можно наблюдать, что построенные по проекту системы приточной вентиляции не используются службой эксплуатации от желания экономить тепло на нагрев приточного воздуха. В палатах создается духота, запахи, загазованность. Поэтому больные открывают фрамуги, и в палату поступает холодный наружный воздух. На нагрев холодного воздуха в количестве санитарной нормы система должна расходовать тепла:
Удельная расчетная нагрузка на систему отопления палаты при отсутствии приточной системы вентиляции и поступлении санитарной нормы наружного воздуха через открытую фрамугу в окне составляет:

Значительное сокращение расчетного расхода тепла на отопление и вентиляцию больничных палат может быть достигнуто путем применения энергосберегающей технологии работы систем ВОК, подробно описанной в [5].

Наиболее простая и экономичная энергосберегающая система ВОК осуществляется путем установки в приточных и вытяжных агрегатах после воздушных фильтров отечественных теплообменников модели КСК из биметаллических накатных оребренных трубок, что обеспечивает их высокую теплотехническую эффективность и малые аэродинамические сопротивления.

Теплообменники в приточных и вытяжных агрегата соединяются между собой трубопроводами, на которых установлен насос и герметичный расширительный бак.

Собранная система утилизации промывается водой, осушается и заполняется антифризом с температурой замерзания на 5 °C ниже расчетной температуры холодного наружного воздуха. В климате Москвы концентрация антифриза должна быть выбрана для условий температуры замерзания не выше: tаф = tнх + (–5) = –28 – 5 = 33 °C.

Теплотехническая эффективность данной системы энергосбережения с насосной циркуляцией антифриза оценивается показателем, имеющем вид:

где tнх2 — температура приточного наружного воздуха после теплообменников в приточном агрегате, °C; ty1 — температура удаляемого под потолком палат воздуха [°C], при схеме смесительной вентиляции (приток и вытяжка под потолком) ty1 = tвх = 20 °C, при схеме вытесняющей вентиляции принимаем значения ty1 = 23 °C и Qt.yy = 0,4.

Преобразуем показатель по формуле (1) к виду вычисления величины температуры tнх2: tнх2 = tнх1 + Qt.yy(ty1 – tнх1) = –28 + 0,4 × (23 + 28) = –7,6 °C.

Требуемое тепло для нагрева саннормы lпн = 480 м3/ч в приточном агрегате, в котором реализована энергосберегающая система с насосной циркуляцией антифриза:

Расчетный расход тепла благодаря применению энергосберегающей системы вентиляции сокращен на:
В работе [5] приведен расчет снижения годового расхода тепла в приточновытяжной системе в климате Москвы с применением энергосберегающей системы с насосной циркуляцией антифриза. Получен удельный показатель снижения расхода тепла за отопительный период в 20 кВт/(год⋅м3) и формула для
вычисления количества сэкономленного за год тепла:

Примем, что в больнице имеется 400 коек в палатах для лечения больных. Эти палаты обслуживаются приточной системой вентиляции, производительность которой: Lпн = 400 × 80 = 32 000 м3/ч. Системы приточно-вытяжной вентиляции в больничных палатах работают 24 ч в сутки, т.е. tвок = 24. По формуле (2) получаем:
По тарифам 2011 г. стоимость 1 кВт тепла от системы теплоснабжения от ТЭ составляет 1,4 руб/кВт. Стоимость сэкономленного за год тепла: Ст.уу = 640 000 × 1,4 = 896 000 руб.

Стоимость системы утилизации с насосной циркуляцией для приточно-вытяжных систем производительностью 32 тыс. м3/ч оцениваем в 600 тыс. руб. Итак, применение в приточно-вытяжных системах в больницах установки утилизации окупает менее чем за один год.

Лето недавнего 2010 года было очень жарким и сухим. В полуденные часы температура наружного воздуха возрастала до tн1 = 34 °C при температуре по мокрому термометру не выше tнм1 = 18 °C. При жарком и сухом климате эффективно и экономично применение наиболее простого и экономичного метода адиабатного охлаждения приточного наружного воздуха, эффективность которого оценивается показателем:
где tн2 — величина температуры адиабатно увлажненного приточного наружного воздуха.

Оригинальный аппарат адиабатного охлаждения воздуха разработан в научно-производственной фирме «Химхолодсервис». По сечению аппарата устанавливается требуемое число полотен из гигроскопичного материала.

Число полотен зависит от требуемой величины показателя Еа. Для Еа = 0,8 требуется по ходу воздуха последовательно установить восемь полотен, которые увлажняются через прорези в верхней натяжной трубе для ленты из двух полотен. Для достижения Еа = 0,8 устанавливается четыре ленты и четыре натяжных трубы. Глубина аппарата по ходу воздуха — не более 0,3 м.

В трубы поступает водопроводная вода питьевого качества, которая увлажняет материал полотен. Вся влага, воспринятая материалом полотен, испаряется в проходящий через них воздух. Поэтому нет рециркуляции воды, как это характерно для традиционных аппаратов адиабатного увлажнения с насосной циркуляцией воды, орошающей насадку из гофрированных пластмассовых листов. Поэтому новый безнасосный аппарат адиабатного увлажнения не загрязняет воздух бактериями, которые могут развиваться в теплой воде поддонов традиционных аппаратов адиабатного увлажнения.

Авторами разработана схема двухступенчатого испарительного охлаждения приточного наружного воздуха, которая достаточно просто может быть встроена в существующие в больницах приточно-вытяжные агрегаты. В качестве первой ступени используется установка утилизации с насосной циркуляцией антифриза, подробно рассмотренная выше в режиме работы в холодный период года. После воздушного фильтра в вытяжных агрегатах добавляется аппарат адиабатного увлажнения вытяжного воздуха с показателем Еа = 0,8. В приточном агрегате после калорифера устанавливается аппарат адиабатного увлажнения Еа = 0,6.

На рис. 1 представлено построение в i–d‑диаграмме влажного воздуха режима двухступенчатого испарительного охлаждения приточного наружного воздуха, который в полуденные часы имеет температуру по сухому термометру tнт = 34 °C и по мокрому термометру tнм1 = 18 °C, а вытяжной воздух имеет температуру по сухому термометру tу1 = 28 °C и по мокрому термометру tум1 = 19 °C. Преобразуем выражение (3) к виду нахождения температуры воздуха после адиабатного увлажнения:
tн2 = tн1 – Еа(tн1 – tнм1). (4)
Используем выражение (4) для вычисления температуры вытяжного воздуха после адиабатного увлажнения в аппарате с Еа = 0,8:
tу2 = tу1 + Еа(ty1 – tум1) = 28 – 0,8_(28 – 19) = 20,8 °C.

Проходя через теплообменные установки утилизации вытяжной воздух с tу2 = 20,8 °C через стенки оребренных трубок будет охлаждать проходящий по трубкам антифриз до температуры tаф = 23 °C, с которой насос будет подавать охлажденный антифриз в трубки теплообменника в приточном агрегате.

Теплотехническая эффективность теплообменника определяется:

где tн2 — температура наружного воздуха после теплообменника, °C.

Преобразуем выражение (5) к виду вычисления температуры tнх2 при Qt = 0,7:
tн2 = tн1 + Qt(tн1 – tаф.х1) = 34 – 0,7 × (34 – 23) = 26,3 °C.
На i–d‑диаграмме (рис. 1) находим значение tнм2 = 15,6 °C. В приточном агрегате установлен аппарат адиабатного увлажнения с Еа = 0,6. Вычисляем температуру приточного наружного воздуха после адиабатного увлажнения:
tн3 = tн2 + Еа(tн2 – tнм2) = 26,3 – 0,6 × (26,3 – 15,6) = 19,9 °C.

В приточном вентиляторе и воздуховодах воздух с tн3 = 19,9 °C нагреется на 1 °C и с температурой tпн = 20,9 °C через напольный воздухораспределитель поступит в зону коек с больными, вытесняя под потолок образующиеся избыточное тепло, водяные пары и газы, где температура вытесненного воздуха возрастет до tу1 = 28 °C и tум1 = 19 °C (см. построение на рис. 1).

Image

Проведенные расчеты и построение на i–d‑диаграмме на рис. 1 показали, что используя установку утилизации и аппараты адиабатного увлажнения можно обеспечить поддержание в больничных палатах комфортной температуры tв = 25 °C. В настоящее время в больничных палатах, как правило, нет средств охлаждения воздуха. Это приводит к тому, что в жаркое лето при повышении tн = 34 °C и сохранении такой жары более двух месяцев в помещениях вырастет температура до tв ı 30–34 °C.

Это создает крайне тяжелые условия для людей, находящихся в этих помещениях. Особенно это неблагоприятно отражается на физическом состоянии людей, имеющих различные заболевания сердечно-сосудистой системы.

Дополнение традиционных систем вентиляции аппаратами адиабатного увлажнения и системами утилизации с насосной циркуляцией антифриза окупится менее чем за год благодаря снижению до 50 % расхода тепла в холодный период года и улучшению комфортных условий нахождения больных в палатах в жаркие летние дни.

Авторы готовы оказать помощь в разработке проектов и приобретении оборудования для создания энергосберегающих систем вентиляции и охлаждения в помещениях больничных палат.

1. АВОК Стандарт‑1‑2002. Здания жилые и общественные. Нормы воздухообмена. — М.: НП «АВОК», 2002.
2. СНиП 23‑01–1999. Строительная климатология. — М.: Госстрой России, 2000.
3. Внутренние санитарно-технические устройства. Ч. 3. Вентиляция и кондиционирование воздуха. Кн. 1. Справ. — М.: Стройиздат, 1992.
4. СНиП 23‑02–2003. Тепловая защита зданий — М.: Госстрой России, 2004.
5. Кокорин О.Я. Энергосберегающие технологии функционирования систем вентиляции, отопления, кондиционирования воздуха (систем ВОК). — М.: Проспект, 1999.

Последнее обновление ( 25.11.2011 )
 
< Пред.   След. >

Будем благодарны, если воспользуетесь одной из этих кнопок: