Кондиционирование Вентиляция Сантехника Отопление
Кондиционирование Вентиляция Сантехника Отопление
СОК СОК
Главное меню
Главная
Новости
СОК онлайн
Рубрики
О журнале
Медиаплан
Реклама
Реклама на сайте
Выставки
Семинары
Контакты
Поиск
Форум
Библиотека
Фотогалерея
Рубрики
Сантехника
Отопление
Кондиционирование
Вентиляция
Энергосбережение
Нормативная База
Объекты
Рекомендуем
Кондиционеры, вентиляция, тепловые насосы.
Тепловые насосы, Телпый пол и Воздушные фильтры
Кондиционеры Daikin
Top100+ :: Teplo.com
Системы воздушного отопления
Aqua-Term 2013
c-o-k.ru

Инфраизлучатели. Три «Э» в отоплении промышленных помещений Часть.6 Версия для печати Отправить на e-mail
28.06.2007

Самое трудное не разработка и внедрения проекта, а процесс убеждения, что он достоин этого. (Из опыта работы).

III. Информация, полезная при проектировании систем лучистого отопления

Вопросы, затрагиваемые в этой главе:

  • при каких параметрах зданий и при каких условиях выгодно лучистое отопление;
  • предварительная оценка теплопотерь;
  • уравнения расчёта;
  • как раcсчитать теплопотери объекта и мощность инфраизлучателей;
  • теплопотери инфильтрацией (пример расчёта);
  • примеры теплотехнических расчётов;
  • коэффициенты теплопотерь элементов зданий;
  • часто встречающиеся ошибки проектантов.

Продолжая затронутую в № 1-5 журнала тему, моделируя реальную последовательность действий и отвечая при этом на важные вопросы, что позволяет избежать ошибок, в следующих публикациях мы шаг за шагом опишем путь, который необходимо пройти от принятия решения по применению излучателей до их успешной, долгосрочной и экономически выгодной эксплуатации.

Последовательность шагов от принятия решения об необходимости отопления до покупки инфракрасных обогревателей и до их успешной эксплуатации следующая:

  • осмотр помещений;
  • выполнение теплотехнических расчётов;
  • подбор подходящего оборудования, производителя и поставщика (сравнение оборудования по техническим данным, по параметрам и качеству комплектующих, по возможностям систем управления микроклиматом, по условиям поставки, по цене, по гарантийным обязательствам, по опыту работы поставщика на конкретном рынке и прочее);
  • разработка, оформление и утверждение проектной документации;
  • выполнение общестроительных работ;
  • покупка оборудования;
  • выполнение монтажа, пусконаладки;
  • соблюдение требований по эксплуатации;
  • выполнения мероприятий по энергосбережению и энергоэфективности.

Порядок проведения работ может несколько отличаться, но для получения максимального эффекта от внедрения лучистого отопления желательно соблюдать приведенные рекомендации.

III.1. Определение мощности лучистой отопительной системы

III.1.1. Введение в расчёты

При обсуждении решения о использовании ИК-излучателей, а также в расчётах необходимо учитывать, что:

❏ инфракрасные излучатели особенно экономно отапливают большие помещения, если их высота более 6 м, а ширина (меньший размер, ограничивающий площадь помещения) равен или больше, чем трехкратная высота. При этом необходимо заметить, что независимо от размеров отопление промышленных и других помещений большого объёма газовыми инфракрасными излучателями выгоднее, чем другим оборудованием. Исключением являются случаи низких (ниже 6 м), хорошо изолированных помещений, когда децентрализованное воздушное отопление способно конкурировать лучистому отоплению. В особенности, если применяется газовое тепловоздушное оборудование;

❏ излучателями возможно выборочно отапливать зоны;

Примечание. B условиях Украины эффективное зональное отопление с соблюдением гигиенических норм возможно, если площадь зоны составляет не менее 40% общей площади помещения, а в условиях России и того более.

❏ в полной мере преимущества излучателей проявляются, когда коэффициент теплопроводности конструкции зданий:

К ≥ 1,16 Вт/(м 2 . °C).

Данное утверждение не означает, что при К < 1,16 Вт/(м 2 . °C) лучистое отопление неэффективно, но подчёркивает, что при этих условиях в качестве альтернативного отопления возможно рассматривать децентрализованное тепловоздушное или комбинированное лучисто-конвективное отопление (например, супертемные излучатели);

❏ особенно экономичным бывает лучистый способ отопления при ограждающих поверхностях здания с коэффициентом теплопотерь:

от К = 1,16 Вт/(м 2 . °C) до К = 2,3 Вт/(м 2 . °C);

❏ в случае принудительного воздухообмена в промышленных зданиях с коэффициентом оздухообмена от h -1 > 3, а в отдельных случаях и при меньших значениях, не нарушая гигиенических требований (ГОСТ 12.1.005-88) нельзя обеспечить отопление только инфракрасными обогревателями.


В таком случае лучше всего применять комбинированные конвективно-лучевые системы отопления, подогревая приточный воздух до температуры воздуха в рабочей зоне.

III.1.2. Предварительная оценка теплопотерь одноэтажного объекта

Для упрощенной оценки теплопотерь объекта и необходимой компенсирующей эти потери общей инсталируемой мощности лучистой системы отопления в условиях Украины возможно воспользоваться табл. 1 .

Image

Примечание 1. Данные в таблице исходят из значения внешней температуры -20 °С и внутренней

температуры +16 °С. В случае других значений температур необходимо сделать коррекцию согласно формулам расчёта теплопотерь.

Примечание 2. Tаблица служит для целей предварительной оценки и не может заменять теплотехнический расчёт!

Общие теплопотери и общая необходимая устанавливаемая мощность для помещения определяется умножением объёма помещения на расходуемую тепловую мощность для обогрева 1 м 3 помещения (Вт/м 3 ).

III.1.3. Уравнения расчёта теплопотерь объекта

При отоплении помещений больших объёмов по всей площади предполагается, что средняя температура стен и потолка приблизительно равняется температуре воздуха внутри помещения и что внутренний воздух в рабочей зоне обогревается прежде всего за счёт конвективной передачи тепла от пола, стен и предметов, находящихся под облучением.

Интенсивность облучения площади пола q , необходимая для достижения результирующей температуры t k , вместе с двумя другими неизвестными величинами: t в — температурой внутреннего воздуха и t п — температурой пола под излучением, рассчитывается из системы трех линейных уравнений (уравнение теплового баланса площадей под облучением, уравнением теплового баланса внутреннего воздуха и уравнением теплового комфорта человека).

Конечный вид этих уравнений представлен на рис. 1

Image

, где

Ë п — теплопроводимость пола (при условии отсутствия подвальных помещений под полом: Ë с = 1/ Ó ( d / ë ),

где ë — теплопроводимость материалов пола, d — толщина отдельных слоев пола);

V — объём воздухообмена;

T п — поверxностная температура пола (на облучаемой поверхности);

t в — температура внутреннего воздуха;

t z п — температура на внешней стороне пола (температура грунта под полом);

t е — внешняя температура для данного региона согласно СНИП (или ДБН);

t k — требуемая температура в объекте;

q . ϕ t / ϕ c — интенсивность облучения человеческого тела (т.е тепловая энергия, которая передается прямо от излучателя человеческому телу. Величины ϕ t и ϕ c получаем из специальных диаграмм).

Упрощённый практический расчёт тепловой мощности излучателей с помощью решения трёх линейных уравнений действителен, если выполняются следующие предпосылки:

❏ коэффициент теплопотерь необлучаемых стен и потолка: k < 2,3 Вт . м -2 . К -1 ;

❏ инфраизлучатели подвешены горизонтально (под потолком);

❏ суммарное время отопления больше 4 часов в сутки;

Если не выполнены вышеперечисленные предпосылки, необходимо увеличить плотность потока q (Вт . м -2 ) за счёт добавок мощности р 1 , р 2 , р 3 , р 4 .

Добавки вводятся для а) компенсации влияния холодных стен:

р 1 = 10% для 2,3 < k < 3,5 (Вт . м -2 . К -1 );

р 1 = 20% для k > 3,5 (Вт . м -2 . К -1 );

б) компенсации подвески на стене с наклоном излучателя по отношению к полу: р 2 = 10%;

в) на ускорение растопки (в случае непрерывного отопления эта добавка не используется):

р 3 = 20% для больших объёмов;

р 4 = 40% для локального отопления.

Для понимания того, как правильно обустроить отопление необходимо описать и другие факторы, влияющие на устанавливаемую мощность излучателей в помещении (например, наиболее важные из этих факторов абсорбционные потери и потери на рассеивание).

III.1.4. Теплопотери инфильтрацией

В пылу конкурентной борьбы часто применяются лишенные всякого физического обоснования изречения о том, что при лучистом отоплении по сравнению с тепловоздушным не возникает разницы в температуре воздуха в помещениях и, как следствие, разницы в теплопотерях обьекта.

Для того, чтобы ввести в заблуждение заказчика, часто сознательно занижается кратность воздухообмена инфильтрацией , которая позволяет скрывать повышенные теплопотери, связанные с процессом естественного воздухообмена.

Даже в проектах по использованию однотипных устройств (лучистых обогревателей) в пылу конкурентной борьбы на фоне незнания владельцами объектов истинного состояния появляются данные о кратности воздухообмена инфильтрацией, далекие от реальных значений (например кратности, pавные 0,1 или 0,2). Расплатой за это бывают отклонение от заданных температур и, что немаловажно, завышенное потребление газа.

Зависимость температуры воздуха у лучистых обогрева телей и у конвективных систем отопления от внешней температуры показанa на рис. 2 .

Image

III.1.5. Фактические данные по воздухообмену инфильтрацией

При определении исход ных условий часто для расчёта теплопотерь используется кратность воздухообмена h = 0,1...0,2 объёма/час, что для больших помещений слишком низкое значение, расходящееся к тому же, во многих случаях с требованиями по гигиене.

Данные по натуральному воздухообмену можно найти в литературе. MOURET и NESSI [2] во время отопительного сезона провели большое количество измерений воздухообмена инфильтрацией и получили значения от 0,2 до 2,3 объёма/час.

DICK [3] эксперементально изучал натуральный воздухообмен и получил значения от 0,92 до 4,6 объёма/час.

LABOHM [4] в бытовых помещениях с закрытыми окнами и дверями получил значение кратности воздухообмена 0,24 объёма/час, при открытых дверях 4,6 объёма/час.

Переносом данных измерений на условия помещений большого объёма, которые практически всегда в худшем состоянии, чем бытовые помещения и канцелярии, можно с достаточной степенью точности сказать, что натуральный воздухообмен на практике принимает значения от 0,5 до 1,0 объёма/час. В случае необходимости можно расчитать его с большой точностью по различным методикам, одна из которых приводится ниже.

К сожалению, до сих пор в литературе я не встречал данные по натуральному воздухообмену в промышленных помещениях. Однако, множество теоретических расчётов, проведенных мною, позволяют относиться к вышеприведенным значениям коэффициентов очень серьезно.

При сравнении лучистой отопительной системы с тепловоздушной часто излучение представляется как излучение горизонтальной пластины. Это справедливо только для лучистых панелей, которые представляют собой лучистую систему большой площади и низкой температуры.

В то же время, для инфраизлучателей как светлых, так и темных, данное предполо жение неверно. Кроме того, конструкция излучателей отличается от конструкции панелей, что при правильном проектировании позволяет облучать только необходимые для создания микроклимата поверхности — пол и стены высотой до 2 м. Это ограничивает потери тепла через конструкции стен.

При естественном воздухообмене инфильтрацией объёмный поток воздуха V vp определяется из соотношения:

V vp = Ó ( I LV . L ) . B . M , где Ó ( I LV . L ) — сумма воздухопропускных способностей окон, внешних дверей и ворот (м 3 . s -1 . Pa -0,67 );

I LV — коэффициент воздухопропускной способности (м 3 . s -1 . м -1 . Pa -0,67 );

L — длина щелей, открывающихся частей окон и внешних дверей, а также щелей между стеклами и рамами;

В — число, характеризующее здание (Pa -0,67 );

М — число характеризующее помещение.

Коэффициенты I, B, M приведены в табл. 2, 3, 4, соответственно.

Image

Image

Image

III.1.4.1. Пример расчёта воздухообмена инфильтрацией в помещении

Расчитаем естественный воздухообмен в помещении имееющем следующие параметры:

❏ высота 8 м, длина 50 м, ширина 18 м;

❏ остекление окон 200 м 2 (окна одинарные, металлические из прокатного уголка, высота окон 2 м, размеры стекол: 100 см (высота) на 50 см (ширина);

❏ ворота: 4 на 6 м металлические (без порога не утепленные) — 2 шт.

Здание отдельно стоящее на местности с сильными порывистыми ветрами, ничем не защищено.

Расчёт

Объем помещения равняется 7200 м 3 .

V vp = Ó ( I LV . L ) . B . M ;

V vp = ((0,9 . 10 -4 . 1200) + + 3,6 . 10 -4 . (4 + 6 + 4 + + 6) . 2)) . 12 . 0,7 = (1224) . 10 -4 . 12 . 0,7 = 1,03 (м 3 /с).

Примечание. B скобках приводится общая длина щелей между стеклами и рамами окон (общая площадь остекления окон 200 м 2 , площадь одного окна:

100 см . 50 см = 0,5 м 2 , т.е. таких окон 400 шт., при этом длина соприкосновения стекла и рамы у

одного окна:

(50 + 100 +50 + 100) см = 3 м), а также учтены идентичные данные для дверей и ворот.

Инфильтрация воздуха за час:

V = 1,03 м 3 /с . 3600 с = = 3708 м 3 .

Коэффициент воздухообмена инфильтрацией для данного здания:

h -1 = 3708 м 3 / 7200 м 3 = = 0,52.

III.1.5. Пример теплотехнических расчётов

Сегодня для теплотехнических расчётов лучше всего применять специальные компьютерные программы. В большинстве случаев фирмы — изготовители и поставщики предлагают свои программы для расчёта теплопотерь объекта и для определения устанавливаемой мощности обогревателей.

Предварительную оценку теплопотерь обьекта при отоплении ИК-обогревателями можно делать с помощью приведенной выше табл. 1 .

Если нет таблицы и программы, то можно использовать следующий метод расчёта. Для наглядности выберем гипотетический объект и расчитаем устанавливаемую мощность, а также климатические параметры внутри помещения.

Основные параметры объекта:

❏ ширина цеха — 18м, длина — 50 м, высота — 8 м (площадь пола: S = 18 . 50 = 900 м 2 , объём:

900 . 8 = 7200 м 3 );

❏ внешняя температура согласно СНИП: -20 °С, эффективная температура (температура тепловосприятия): +18 °С;

❏ стены из бетона толщиной 0,25 м, крыша прямая из бетонного перекрытия толщиной 0,1 м, пол бетонный толщиной 0,5 м;

❏ площадь одинарных окон 200 м 2 ;

❏ ворота размером 4 на 6 м, металлические, неутепленные, без порога в количестве 2шт;

❏ фонари отсутствуют.

Коэффициенты теплопотерь расчитываются, исходя из известной формулы:

К = 1/(1/ á i + Ó d n / ë n + 1/ á e ),

где Ó d n / ë n — тепловое сопротивление стены (м -2 . К . Вт -1 );

d n — толщина ограничивающей плоскости (м);

ë n — удельная теплопроводность материалов отдельных слоев ограничивающей плоскости (Вт . м -1 . К -1 );

á i — коэффициент теплопередачи с внутренней стороны стены (= 8 Вт . м -2 . К -1 );

á e — коэффициент теплопередачи с внешней стороны стены (= 23 Вт . м -2 . К -1 ).

Для упрощения процедуры расчёта воспользуемся таблицей коэффициентов теплопотерь элементов зданий ( табл. 5 ).

Image

Подставив соответствующие значения в формулы и оформив промежуточные результаты в виде таблицы получим информацию, сведенную в табл. 6.

Image

Из таблицы видно, что общие теплопотери равняются 505935 Вт. Теплопотери рассматриваемого объекта в пересчёте на 1 °С: = 55935/38 = 13,31 (кВт/°С).

Для получения нужной температуры теплоощущения необходимо компенсировать эти теплопотери установленной мощностью обогревателей.

Для расчёта необходима инфоpмация о лучистом КПД обогревателей, абсорбционных потерях и потерях на рассевание. Например, в ТУ обогревателя приводится лучистый КПД излучателя — 60%.

Абсорбционные потери (здание средней высоты, относительно чистый воздух) оценим как равняющиеся 4%. Потери на рассеивание — 15% (здание средней высоты, пол тёмный бетонный, площадь плотно укомплектованна станками).

Полезно используемая часть лучевой энергии (вклад излучения в отопление) равняется:

1 . 0,60 . (1 - 0,04) . (1 - 0,15) = 0,49 (т.е. 49%).

Поскольку еще неизвестна температура воздуха ( t в ) при заданной требуемой температуре теплоощущения, то для определения теплопотерь и тепловой мощности излучателей используем итерационный метод таким образом, что в нулевом приближении принимаем значение температуры, например, как равное t = 12 °С (правильность выбора впоследствии необходимо проверить и в случае необходимости подкорректировать).

В таком случае с точки зрения теплопотерь объекта значение разницы температур составляет:

Ä t = 12 °С - (-20 °С) = 32 °С.

Необходимая установленная мощность будет равняться:

13,31 (кВт/°С) . 32 (°С) = 426 кВт.

Удельная потребность тепла при этом составит:

426 кВт/(900 + 272) м 2 = 363 Вт/м 2 .

(900 м 2 — площадь пола, 272 м 2 = (50 + 50 + 18 + 18) .

2 — это площадь стен рабочей зоны под облучением).

В этой удельной потребности тепла лучистое тепло составляет (см. выше) 49%, т.е. 0,49 . 363 = 178 Вт/м 2 .

Температура теплоощущения согласно вышеприведенной формуле равняется:

t эф = t в + 0,072 . I = 12 + 0,072 . 178 = 24,8 °С.

Значение полученной температуры значительно выше требуемого значения +18 °С, поэтому температуру воздуха примем несколько ниже.

Новое значение температуры воздуха примем равняющимся +7 °С, тогда значение разницы температур составит Ä t = 27 °С, а теплопотери: 27 °С . 13,31 кВт/°С = 359 кВт.

Удельная тепловая нагрузка составляет 306 Вт/м 2 , а доля лучистой составляющей энергии (49%) — 150 Вт/м 2 . Температура теплоощущения в данном случае равняется: 7 + 0,072 . 150 = 17,8 °С.

Полученное значение температуры удовлетворяет заданным требованиям. Полная потребность тепла

согласно расчётам будет составлять 359 кВт. Необходимо учитывать, что излучаемое тепло распространяется не во всех направлениях, а направляется в рабочую зону.

Направленность передачи тепла в рабочую зону позволяет уменьшить общую рассчитанную мощность обогревателей в 1,5 раза. (Отражатели излучателей позволяет направлять энергию в заданном направлении, концентрируя её).

Разделив полученную мощность на 1,5, мы получим необходимую инсталированную мощность лучистых обогревателей (239 кВт). Учитывая то, что коэффициент теплопотерь К > 3,5, необходимо этот результат умножить на 1,2 (добавить 20% мощности согласно приведeнным выше правилам).

Реальная необходимая устанавливаемая мощность для рассматриваемого здания будет равняться 287 кВт.

Примечание 1. Если бы высота помещения была больше и излучатели устанавливались выше чем 8 м, то мы бы добавляли 2% дополнительной мощности на каждый метр высоты. Например, при высоте подвески 10 м мы бы добавили 4% мощности. Такую же добавку необходимо делать также в случае средне или сильно запыленных помещений, но уже в том случае, если высота подвески выше 5 м.

Примечание 2. Светлыми излучателями лучше не пользоваться в запылённых помещениях. При использовании тёмных лучистых обогревателей в сильно запыленных помещениях необходимо периодически очищать отражатели во избежание ухудшения параметров, а также подавать воздух для сгорания из вне пределов помещения, чтобы не допустить возникновения нагара внутри труб.

Продолжение....

Литература

  1. Johan Becker . Spotreba energie salaveho vytapenie se svetlymi ziaricmi // Topenarstvi instalace. — 2005. — № 5.
  2. Mouret, J-Nessi. A Percherches experimentales sur les taux de renouvellement naturel de l’air // Industries Thermiques. — 1956. — Nr. 10. — S. 607.
  3. Dick J.B. The fundamental of Natural Ventilation of Hauses // Journal of the Inst. of heat a. Vent. Eng. — 1950. — S. 123/34.
  4. LABOHM, G. Ein Beitrag yum Problem der Messung der Luftung von Wohn-, Arbeits- und Aufenthaltsrau-men Dissertation. Stutgart, 1963. — Nr. 1381. .

Автор Владимир Молька, инженер, коммерческий директор фирмы Adrian, Словакия, лауреат Всеукраинского конкурса «Энергоэффективность 2005»  Cтатья написана в соавторстве с Золотько Е.В., к.т.н., доцентом кафедры «Безопасность жизнедеятельности» Днепропетровского НУ

Последнее обновление ( 09.06.2012 )
 
< Пред.   След. >

Будем благодарны, если воспользуетесь одной из этих кнопок: